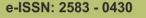


e-ISSN: 2583 - 0430

कृषि-प्रवाहिका: ई-समाचार पत्रिका, (2025) वर्ष 5, अंक 6, 1-6

Article ID: 426

तिल की उन्नत किस्में: प्रगति, संभावनाएँ और भविष्य की दिशा


खुशबू चंद्रा¹, डी.के.पयासी², योगेश कुमार अहलावत³ और राजनी बिसेन⁴

¹बिहार कृषि विश्वविद्यालय,बिहार ²⁴जवाहरलाल नेहरू कृषि विश्वविद्यालय, सागर, मध्य प्रदेश ³चंडीगढ़ विश्वविद्यालय, मोहाली, चंडीगढ

तिल (Sesamum indicum L.) एक प्राचीन तिलहन फसल है जिसे हजारों वर्षों से खाद्य और पोषण के स्रोत के रूप में उपयोग किया जाता रहा है। इसके बीजों में उच्च मात्रा में तेल, प्रोटीन, खनिज और एंटीऑक्सीडेंट्स पाए जाते हैं, जो इसे मानव आहार के लिए अत्यंत उपयोगी बनाते हैं।तिल का मूल अफ्रीका माना जाता है, हालांकि भारत को भी इसका प्रथम स्थान कहा गया है। तिल की खेती 2000 ईसा पूर्व में मेसोपोटामिया और बाद में भूमध्यसागरीय क्षेत्रों तक फैली। यह फसल अत्यधिक सखा-सहिष्ण होती है और इसके मजबत जड तंत्र के कारण मिट्टी की उर्वरता को भी बेहतर बनाती है। फिर भी, वैज्ञानिक शोधों की कमी और कृषि सुधार के प्रयासों में उपेक्षा के कारण इसकी उत्पादकता कम बनी हुई है। हाल के वर्षों में, उन्नत जेनेटिक और जीनोमिक तकनीकों के माध्यम से तिल की नई उन्नत किस्मों को विकसित करने के प्रयासों में तेजी आई है। तिल के बीज में उच्च गुणवत्ता वाला तेल होता है, जिसमें औषधीय और पोषण संबंधी गुण भी होते हैं। विश्वभर में तिल की खेती विभिन्न जलवायु और मिट्टी प्रकारों में होती है, लेकिन इसकी पैदावार और गुणवत्ता बढाने के लिए प्रजनन तकनीकों का विकास आवश्यक है। इस लेख में तिल की प्रजनन की वर्तमान स्थिति का एक विस्तृत अवलोकन प्रस्तृत किया गया है।

कृषि-प्रवाहिकाः ई-समाचार पत्रिका

राज्य के अनुसार किसानों द्वारा पसंद की जाने वाली तिल की किस्में

राज्य	प्रजातियाँ			
गुजरात	गुज-तिल-1, गुज-तिल-2, गुज-तिल-3, गुज-तिल-4, गुज-तिल-10			
मध्य प्रदेश / छत्तीसगढ़	टीकेजी-21, टीकेजी-22, टीकेजी-55, जेटीएस-8, टीकेजी-306, टीकेजी-308, पीकेडीएस-8, पीकेडीएस-11, पीकेडीएस-12			
राजस्थान	आरटी-46, आरटी-54, आरटी-103, आरटी-125, आरटी-127, आरटी-346, आरटी-351			
महाराष्ट्र	एकेटी-64, एकेटी-101, जेएलटी-408, पीकेवीएनटी-11, फुले तिल-1			
उत्तर प्रदेश	टी-78, शेखर, प्रगति, तरुण			
तमिलनाडु	को-1, टीएसएस-6, पायूर-1, वीआरआई-1, वीआरआई-2, टीएमवी-7			
पश्चिम बंगाल	रामा, सावित्री, तिलोत्तमा (बी-67)			
ओडिशा	निर्मला, प्राची, अमृत, शुभ्रा, स्मारक, उषा, उमा, विनायक			
आंध्र प्रदेश	वराह, गौतम, श्वेत तिल, चंदना, हिम, राजेश्वरी			
केरल	तिलतारा, तिलरानी, तिलक, कायमकुलम-1			
कर्नाटक	डीएस-1, डीएस-5, डीएसएस-9			
पंजाब	पंजाब तिल-1, टीसी-25, टीसी-289			
बिहार	कृष्णा			
हरियाणा	हरियाणा तिल-1, हरियाणा तिल-2			
हिमाचल प्रदेश	बृजेश्वरी			

तिल प्रजनन की प्रमुख प्राथमिकताएँ

तिल एक पारंपरिक लेकिन महत्वपूर्ण तिलहन फसल है, जिसकी उत्पादकता एवं गुणवत्ता में सुधार के लिए व्यवस्थित प्रजनन कार्यक्रम आवश्यक हैं। तिल प्रजनन का उद्देश्य केवल उपज वृद्धि नहीं, बल्कि टिकाऊ कृषि प्रणाली के लिए उपयुक्त किस्मों का विकास भी है। नीचे तिल प्रजनन की प्रमुख प्राथमिकताओं का विस्तारपूर्वक विवरण दिया गया है:

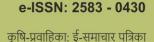
बीज उत्पादन एवं उपज में वृद्धि

तिल की पारंपरिक किस्में कम उपज देने वाली होती थीं, जिनकी औसत उपज 300-500 किग्रा/हेक्टेयर थी।उन्नत प्रजातियों द्वारा 1000-1200 किग्रा/हेक्टेयर तक की उपज संभव हो पाई है।इसके लिए बहुवर्षीय चयन, संकरण एवं जनसंख्या सुधार विधियों का प्रयोग किया जा रहा है।उपज में वृद्धि हेतु शाखित पौधे, अधिक फली संख्या, बड़ी फली एवं अधिक बीज प्रति फली जैसे लक्षणों को बढ़ावा दिया जाता है।

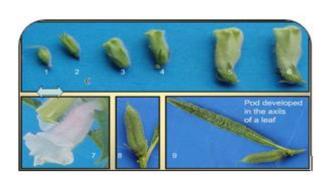
पौधों की संरचना में सुधार

कठोर तना, सीधा विकास तथा कम ऊँचाई वाले पौधे यांत्रिक कटाई के लिए उपयुक्त होते हैं।एकसमान परिपक्ता, गिरने से बचाव और शाखाओं की उचित व्यवस्था फसल प्रबंधन में सहायक होती है।पौधों की बनावट का सुधार बीज झड़ने की समस्या को भी कम करता है।

रोग एवं कीट प्रतिरोधक क्षमता का विकास


तिल की फसल को फफूंदजित रोगों (जैसे कि तना सड़न, झुलसा), कीटों (जैसे तिल की इल्ली) और वायरल रोगों (जैसे फाइलेरिया जैसे वायरस) से भारी नुकसान होता है।प्रतिरोधी किस्मों का विकास जैविक और टिकाऊ खेती के लिए आवश्यक है।रोग-प्रतिरोधी जर्मप्लाज्म के चयन एवं उनके संकरण द्वारा रोगों के प्रति सहनशील किस्मों का विकास किया जा रहा है।

शुष्क, खारी तथा अन्य प्रतिकूल परिस्थितियों में सहनशीलता


जलवायु परिवर्तन के प्रभाव से तिल उत्पादन प्रभावित हो रहा है, विशेषकर वर्षा आधारित क्षेत्रों में।सूखा-सहनशील, अल्प वर्षा में भी उत्पादन देने वाली, तथा मृदा लवणता सहन करने वाली किस्में प्रजनन कार्यक्रम का महत्वपूर्ण लक्ष्य हैं।इसके लिए जैव-शारीरिक परीक्षण और आणविक सूचक आधारित चयन विधि का उपयोग किया जा रहा है।

फली न फटने वाली किस्मों का विकास

पारंपरिक किस्मों में फली पकने के बाद स्वतः फट जाती है, जिससे बीज झड़ जाते हैं और भारी हानि होती है।नॉन-शैटरिंग या संचालित फली किस्में यांत्रिक कटाई के लिए उपयुक्त और कम नुकसान वाली होती हैं।यह विशेषता उन्नत तिल किस्मों के चयन में एक प्रमुख मानदंड है।

तेल की गुणवत्ता में सुधार

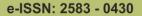
तिल का तेल प्राकृतिक एंटीऑक्सीडेंट्स (जैसे सेसामिन, सेसामोल) से भरपूर होता है, परंतु तेल प्रतिशत एवं गुणवत्ता में सुधार की आवश्यकता है।तेल प्रतिशत बढ़ाना (45–55% से अधिक), ओलिक वसा अम्ल का अनुपात बढ़ाना, और औषधीय गुणों को सुदृढ़ करना प्रजनन कार्यक्रमों का एक प्रमुख उद्देश्य है।बायोटेक्नोलॉजी आधारित चयन से तेल गुणों में लक्षित सुधार किया जा सकता है।

तिल की उत्पादकता आमतौर पर कम होती है, विशेष रूप से क्योंकि इसकी फली पकने पर फट जाती है और बीज बिखर जाते हैं। वैज्ञानिकों ने ऐसी किस्में विकसित की हैं जिनकी फली

उत्पादन में सुधार की चुनौतियाँ

फट जाता हु आर बाज बिखर जात हैं। वैज्ञानिकों ने ऐसी किस्में विकसित की हैं जिनकी फली पकने पर नहीं फटती, जिससे कटाई में बीजों की क्षित कम होती है। साथ ही, बीज का आकार, बीजों का वजन (1000 बीज वजन)

और फली की संख्या जैसे गुण


उपज को प्रभावित करते हैं। तिल की प्रजनन का महत्व

तिल की खेती में उत्पादन बढ़ाने, रोग प्रतिरोधकता बढ़ाने और तेल की गुणवत्ता सुधारने के लिए प्रजनन एक आवश्यक प्रक्रिया है। तिल की कई किस्में विकसित की गई हैं जो विभिन्न जलवायु और मिट्टी के अनुकूल हैं। प्रजनन के माध्यम से उच्च उपज देने वाली, रोग प्रतिरोधी और अनुकूलन क्षमता वाली नई किस्में तैयार की जाती हैं।

तिल की प्रजनन विधियाँ

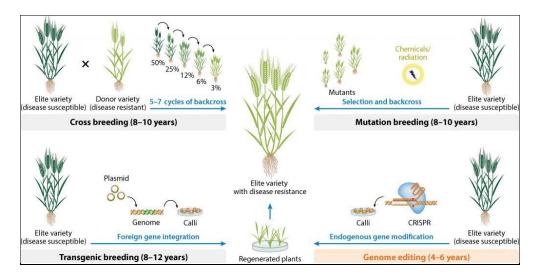
तिल की प्रजनन प्रक्रिया का प्रमुख उद्देश्य उच्च उपज देने वाली, बेहतर गुणवत्ता वाली, रोग एवं कीट प्रतिरोधी तथा प्रतिकूल पर्यावरणीय परिस्थितियों में सहनशील किस्मों का विकास करना है। तिल में पारंपरिक और आधुनिक दोनों प्रकार की प्रजनन

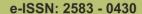
विधियाँ अपनाई जाती रासायनिक उत्परिवर्तन (Chemical Mutation) जिसमें ई.एम.एस. (Ethyl Methane Sulfonate), डाइएथाइल सल्फेट और सोडियम एजाइड जैसे रसायनों का उपयोग कर बीजों में आनुवंशिक परिवर्तन किए जाते हैं। उदाहरण स्वरूप, 1.0 mM ई.एम.एस. के उपयोग से बीज अंकुरण 50% तक घट सकता है, जिससे उत्परिवर्तन की अधिकतम दक्षता प्राप्त होती है।**संकर प्रजनन और हेटेरोसिस** (Hybridization Heterosis **Breeding**) अंतर्गत दो भिन्न किस्मों के बीच

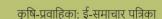
कृषि-प्रवाहिका: ई-समाचार पत्रिका

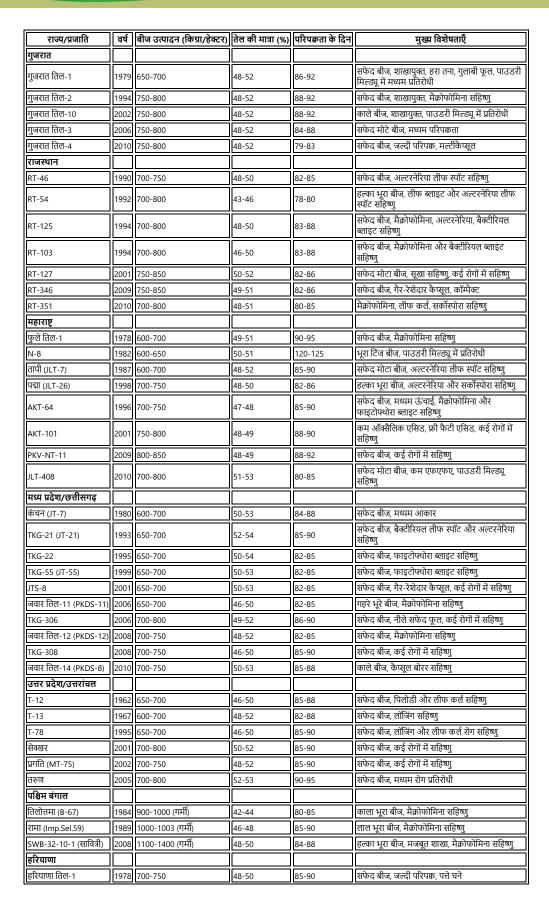
क्रॉस किया जाता है, जिससे नई संकर संतित में दोनों अभिभावकों के लाभकारी गुण सम्मिलित हो जाते हैं। इससे तेज वृद्धि, उच्च उपज और बेहतर रोग प्रतिरोधकता प्राप्त की जा सकती है। इसके अतिरिक्त.

अंतरप्रजातीय संकरण (Interspecific


और **Hybridization**) एक महत्वपूर्ण विधि है, जिसमें तिल की घरेल किस्मों को उसकी जंगली प्रजातियों के साथ संकरण किया जाता है ताकि उनमें मौजूद रोग प्रतिरोध, सुखा अथवा लवणता सहिष्णता जैसे गणों को स्थानांतरित किया जा सके। हालांकि, इस विधि में आनुवंशिक असंगति और परागण संबंधी बाधाएँ आती हैं, जिससे इसकी


सीमित होती सफलता है।पारंपरिक विधियाँ चयन **Selection** (Conventional वंश Methods) जैसे (Pedigree Selection), द्रव्य संकरण (Bulk Breeding), और मल्यांकन आधारित चयन स्थानीय परिस्थितियों और किसानों के अनभवों पर आधारित होती हैं. जो अब भी कई क्षेत्रों में उपयोग में लाई जाती हैं।वहीं आधनिक जैव प्रौद्योगिकी विधियों में से एक है आणविक सुचक आधारित प्रजनन (Marker-Assisted जिसमें डीएनए Breeding), मार्करों (जैसे SSR, SNP) की सहायता से वांछित जीनों की उपस्थिति का पता लगाकर सटीक और तेज चयन किया जाता है। इसका उपयोग फली न फटना.


रोग प्रतिरोध और तेल गुणवत्ता जैसे गुणों से संबंधित QTL की पहचान में किया जा रहा है।अंततः. विधियाँ अत्याधनिक जीनोमिक चयन एवं जीन इंजीनियरिंग (Genomic Selection Genetic and Engineering) में RNA-sea. CRISPR-Cas9 और बायोटेक्नोलॉजिकल उपकरणों का उपयोग कर तिल में एलर्जन तत्वों को कम करने, तेल की गुणवत्ता सधारने और फली के शैटरिंग को नियंत्रित करने पर कार्य किया जा रहा है। इन सभी विधियों का समन्वित उपयोग भविष्य में अधिक उत्पादक, टिकाऊ और पोषण-समृद्ध तिल किस्मों के विकास की दिशा में सहायक सिद्ध हो रहा है।


तिल की उन्नत किस्मों के विकास की विधि

विधि	अवधि	प्रमुख चरण	उद्देश्य
बैकक्रॉस प्रजनन (Backcross Breeding)	8-10 বর্ষ	1. अभिजात (elite) किस्म और रोग प्रतिरोधक दाता किस्म का क्रॉस 2. संतान का चयन और बार-बार अभिजात किस्म से पुनः क्रॉस 3. अंतिम चयन	रोग प्रतिरोधी किस्म का विकास
ट्रांसजेनिक प्रजनन (Transgenic Breeding)	8-12 वर्ष	1. लक्षित जीन की पहचान 2. प्लाज्मिड या क्रिस्पर (CRISPR) तकनीक का उपयोग 3. ऊतक संवर्धन (callus formation) और पुनर्जनन 4. फील्ड परीक्षण	वांछित लक्षण (जैसे कीट/रोग प्रतिरोध, अधिक उपज) को स्थानांतरित करना
उत्परिवर्तन प्रजनन (Mutation Breeding)	8-10 वर्ष	1. बीजों या पौधों पर रसायनिक/भौतिक उत्प्रेरक (जैसे गामा किरणें) का प्रयोग 2. उत्परिवर्तित पौधों की स्क्रीनिंग 3. चयन और मूल्यांकन	नई वांछनीय विशेषताओं वाले उत्परिवर्तित पौधों का विकास

e-ISSN: 2583 - 0430

कृषि-प्रवाहिकाः ई-समाचार पत्रिका

राज्य/प्रजाति	वर्ष	बीज उत्पादन (किग्रा/हेक्टर)	तेल की मात्रा (%)	परिपक्वता के दिन	मुख्य विशेषताएँ
हरियाणा तिल-2	2012	650-750	48-50	85-90	सफेद बीज, पिलोडी और लीफ कर्ल सहिष्णु
आंध्र प्रदेश					
गौरी	1974	650-700	46-48	85-90	गहरे भूरे बीज, जल्दी खरीफ और गर्मी के लिए उपयुक्त
माधवी	1978	650-700	46-48	78-82	हल्का भूरा बीज
राजेश्वरी	1988	700-750	48-50	85-90	सफेद बीज, स्टेम रॉट और पाउडरी मिल्ड्यू सहिष्णु
वराहा (Yel.1)	1993	800-850	50-53	82-85	गहरा भूरा बीज, समान परिपक्वता
गौतम (Yel.2)	1993	750-800	50-52	76-80	हल्का भूरा बीज, अल्टरनेरिया लीफ स्पॉट सहिष्णु
स्वेता तिल	1997	750-800	50-52	82-86	सफेद बीज, कई रोगों में सहिष्णु

तिल प्रजनन में चुनौतियाँ

- विकिरण क्षमता की कमी: तिल के फूलों का परागण सीमित होता है, जिससे उत्पादन में बाधा आती है।
- जैव विविधता का संरक्षण: स्थानीय किस्मों का संरक्षण आवश्यक है क्योंकि ये किस्में पर्यावरणीय दबावों के प्रति अधिक सहनशील होती हैं।
- बीज गुणवत्ताः उचित बीज उत्पादन और वितरण प्रणाली का अभाव भी उत्पादन को प्रभावित करता है।

भविष्य की दिशा

- तिल प्रजनन में आगे बढ़ने के लिए निम्नलिखित पहलुओं पर ध्यान दिया जा रहा है:
- नवीनतम आनुवंशिक तकनीकों का व्यापक उपयोग।
- तनाव सहनशील और रोग-प्रतिरोधी किस्मों का विकास।
- किसानों को गुणवत्तापूर्ण बीज उपलब्ध कराना।
- तिल की पैदावार बढ़ाने के लिए उन्नत कृषि प्रबंधन तकनीकों का समावेश।

निष्कर्ष

तिल की प्रजनन की दिशा में वैज्ञानिकों ने महत्वपूर्ण प्रगति की है। उच्च गुणवत्ता वाली, रोग एवं कीट प्रतिरोधक, अधिक उपज देने वाली और पर्यावरणीय बदलावों के अनुकूल किस्मों का विकास संभव हुआ है। यदि इन अनुसंधानों का प्रयोग कृषि स्तर पर प्रभावी रूप से किया जाए, तो यह न केवल तिल की वैश्विक उत्पादकता को बढ़ा सकता है, बल्कि छोटे किसानों की आजीविका भी सुदृढ़ कर सकता है।